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DYNAMICS OF A DIVERGING LIQUID MENISCUS IN
A CAPILLARY, TAKING INTO ACCOUNT THE SPECIFIC
PROPERTIES OF THIN FILMS

B. V. Zheleznyi UDC 532.68

The theory of the diverging meniscus of a Newtonian liquid for capillary flow conditions at low
meniscus velocities,in which the thermodynamic and rheological features of thin wetting films
appear, is set forth, Two cases are considered: thermodynamically stable wetting film with
high viscosity in the boundary layer on a completely wetted solid surface and a thermodynam-
ically unstable film on a conditionally wetted solid surface exhibiting a liquid slip effect,

The relation between the thickness h* of the film left on the walls of the cylindrical capillary behind a
diverging liquid meniscus and the rate v at which the meniscus travels is determined when studying the prop-
erties of wetting films in the capillary method {1}. Extrapolation of hx« (v) to zero velocity makes it possible
to find the thickness of equilibrium films with a meniscus in capillaries of various radii R andtothereby deter-
mine the basic thermodynamic characteristic of equilibrium wetting films — the wedging pressure isotherm,
Moreover, hy (v) provides information about the rheological properties of wetting films. A theory of the di~-
verging meniscus that would take into account the specific properties of thin films is necessary in order to
interpret this information and to correctly extrapolate h« (v) to zero velocity.

The dynamics of the diverging meniscus of a wetting liquid has been previously considered under the
assumption that the film deposited on a solid film surface exhibits the properties of a bulk liquid phase (the
viscosity coefficient 17, and coefficient of surface tension ¢ are given by tables) [2-4]. Various methods have
yielded the equation

odBh/dI® = Sng(L/R* — hy/h®), (1)

which describes steady flow in one direction in a flat film of a Newtonian liquid on a plane {(or circular cy-
lindrical) solid surface if flow occurs only due to capillary forces (capillary flow regime}, In Eq, (1) hx is the
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Fig. 1

finite thickness of the wetting surface deposited on the solid surface behind the meniscus, and h is the current

thickness of the film for the current coordinate I, counted off along the solid surface in the direction in which

the meniscus travels; the coordinate system is bound to the meniscus, i.e., the center of the meniscus is as-

sIuTned fixed and the solid surface is assumed to travel in the negative direction of the I axis with velocity
vi,

Equation (1) expresses the relation between a motive flow force (capillary pressure gradient) and steady
flow through a given cross section of a flat film. We will demonstrate that this is so'by deriving an analogous
equation to take into account the specific properties of thin films. ILet us consider flow in the direction x in
a flat wetting film on a plane surface (Fig. 1). Suppose the film has constant thickness in the z direction per-~
pendicular to the plane of the figure; the film "profile," i.e., the curve h(x), is invariant over time and in space,
while the solid surface moves at a velocity v. Such a steady state is realized near a liquid meniscus moving
at a constant velocity in a capillary if the system is considered in the coordinate system given above.

Suppose the motive flow force is a bulk force G (pressure gradient) and that no tangential stress is pres-
ent on the free surface of the film, If the deeclivity condition

dhidl < 1 2)

holds, the flow velocity component in the direction of the y axis perpendicular to the solid surface can be dis-
regarded and flow can be considered as unidirectional. If the liquid in the film has constant viscosity coef-
ficient and the wall attachment condition is valid, solution of the Navier—Stokes equation for this case leads
to the equation '

q = GI*/3n, — vk,

where q is total flow per unit length in the z direction, Gh3/3n0 is the flow component due to the force G, and
—vh is the flow component due only to the choice of the moving coordinate system, If G is determined solely
by capillary forces, at the distance from the meniscus at which the film acquires a constant thickness hx,

G =0 and q =vhx, i.e., the film travels as a whole together with the wall with a velocity ~v. Since flow q is
identical in the steady state, we have for an arbitrary cross section

G333 = vlh — hy). . 3)
In the case of a flat film, the usual capillary forces satisfy the equation [2]
| G = — dp/dl = odhidP, @)

where p is capillary pressure, negative for a concave (o the gas phase) meniscus, Substituting Eq. (4) in Eq.
(3), we arrive at Eq. (1).

In order to extend the theory to the case of thin films it is necessary to take into account how the thermo-~
dynamic and rheological properties of such films may vary. The thermodynamic features of thin films mani-
fest themselves in the appearance of a wedging pressure P in addition to the usual capillary pressure. The
way in which this pressure can be taken into account in the equations of motion of thin films has been set forth
in [5]. This method has now become widespread [6, 7] and will be adopted here without any changes. Accord-
ing to [5], the effect of the wedging pressure on flow in a flat film is formally identified with the effect of an
external pressure equal to it in magnitude but oppositely directed, i.e., with the effect of an additional force
of the same nature as the usual capillary pressure. Here it is assumed that the local value of the wedging
pressure in a given cross section of a flat film is a function solely of thickness [P=P(h)], as in the case of a
flat film, but is independent of the shape of the surface bounding the film in neighborhoods of the cross sec-
tion, Thus, Eq. (4) may be replaced by the equation

G=—d(p —P)dL ©)

The equation for G can also include such bulk forces as gravity, though whenever the specific properties of
thin films manifest themselves, these forces are usually inessential, and so will be disregarded.
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In order to use Eqg. (5) in interpreting Eq. (3) it is necessary to have the relation P(h), called the wedg-
ing pressure isotherm, In many cases it is expressed by a power law of the form

P = — 46 ahn, (6)

where A is a constant and n=const > 1, When n=3, Eq, (6) expresses the well-known Gamaker law for non-
retarding disperse interaction, and in this case A is called the Gamaker constant (the numericalfactor 67 occurs
precisely in the Gamaker equation, and is retained here for generality in the case of arbitrary n). We will

use Eq. (6) as P(h) for n=3 and 2. These two values of n correspond to experimentally discovered isotherms
P(h) for wetting films of low-polar and high-polar liquids {1].

The sign of A is determined by the nature of the energy interaction between the liquid and the solid sur-~
face. Negative A corresponds to strong interaction and is realized in the case of a lyophilic (completely wet~
ted) solid surface and corresponds to thermodynamically stable polymolecular liquid films. Positive A cor~
responds to weak interaction and is realized for a lyophobic (conditionally wetted) solid surface characterized
by a strongly nonzero balanced wetting angle. Polymolecular liquid films are thermodynamically unstable on
such a surface.

The rheological properties of thin films are taken into account using two rheological models correspond-
ing to the different types of the energy interaction between the liquid and the solid surface. In the case of
thermodynamically stable films (lyophilic solid surface) an attachment model will be used in which it is as~
sumed that there is no liquid slip along the surface and that the local viscosity coefficient in the boundary
layer is not a single-valued function of the distance to the solid surface.

A slip model, in which it is assumed that the liquid slips as it moves along the solid surface, and where
the rate of slip is proportional to the tangential stress on the solid surface, while the viscosity coefficient of
the liquid within the film (coefficient of viscous friction) is constant and equal to 7, will be used for the case
of thermodynamically unstable films (lyophobic surface). In both models proportionality between the motive
force and the flow under steady-state conditions is retained; in particular, Eq. (3} can be used by replacing
1, by the effective viscosity coefficient ne of the film, which is a function of the thickness h of the latter. We
may assume that for sufficiently large h, 71, (h) in the attachment model is described by the equation

Ne="no(1 -+ #/h), (n
and that
Ne=ny(1 + A/h)-1, (8)

where k=const =0, is valid for all h in the slip model; the coefficients k in Eqgs. (7) and (8) are determined by
the actual physical properties of the system,

Previously obtained {8] experimental results can be used as a basis for selecting the rheological attach-
ment model, while results given in [9] can be used for selecting the slip model. A more detailed presentation
of the effective viscosity coefficient of a thin film (layer) will be given in a future report,

It should be noted that no equilibrium polymolecular ("liquid") film with a meniscus can exist on a lyo-
phobic surface [10]. Only if a diverging meniscus moves fast enough behind it can a film that is uniform in
thickness be deposited over a restricted section of the surface. This film will be thermodynamically unstable
and before long decomposes into separate drops of liquid, However, if such a film that is uniform in thickness
exists for at least a brief time at some distance from the meniscus, the process by which this film decomposes
can be disregarded in studying the meniscus dynamics, since in this case it will not affect the shape of the
meniscus nor the value of hy (after the film decomposes hx will characterize the total mass of the liquid that
has been deposited in the form of separate drops on the lyophobic surface), The slip model corresponds to flow
conditions precisely in such a "short-lived" wetting film,

If we assume that Eqs. (6)-(8) are valid over the entire range of film thicknesses (h>h ) being studied,
we find from Eqs, (3) and (5)-(7) for the case of a lyophilic solid surface that

odh/dI + nA/6mhn+t - dhidi={(3nw/h?) (1 + kR) (h — hy), (9)
where A <0. Inthe case of a lyophobic solid surface Egs. (3), (5), (6), and (8) imply that

od’h!dl} + nA/6rh 1. dh/dl=(3ngh®) (h — hy)' (1 = k/R), (10)
where A >0,
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TABLE 1

Y 0 0,1 0,3 1 3 10 30
6
[¢] 0,6430  0,6740 0,7392 0,9945 14,8524 5,2073 15,1213
0.4 0,6643 0,6956 0,7611 1,0165 14,8713 5,2195 15,1286
0,3 0,7060 0,7378 0.8039 1,0594 1,9084 5.2437 15,1430
1 0,8439 0,8767  0,9443 1,1998 2.0329 5.3273 15,1936
3 1,1897 1,2237 1,2930 1,5479 2,3542 5,5587 15.3369
10 2,1399 2,1748 2.2453 2,4985 3,2695 6,2084 15.8267
30 4,1222 4,1575 4,2284 4 4799 5.2247 8,0845 17,1418
TABLE 2
X 0 } 0,1 0,3 1 3 10 30
B
0 0,6430 0,660% 0,6971 0,8453 1,3738 3,5561 10,1307
0.1 0,6643 0,6818 0,7189 0,8670 1.3931 3,5688 - 10,1384
0,3 0.7060 0,7239 0,7615 0,9101 1,4311 3,5941 10,1536
1 0.8439 0,8625 0,9013 1,0502 1,5580 3.6815 10.2068
3 1.1897 1,2092 1 .2493 T 1.3982 1.8842 3.9923 10,3574
10 2.1399 2.160! 2,2011 2,3491 2,8073 . 46860 10.8707
30 4 1222 4,1427 4,1840 4,3308 4,76% 56,4871 12,2395
TABLE 3
\Y 0 0,1 0,3 1 3 10 30
B
0 0,6430 0.6265 0,5955 0,5097 0,3841 0,2499. 0,1578
0,1 0,6227 0,6064 0,5760 0,4933 0,3741 0,2455 0,1560
0,3 0 5874 0,5715 0,5423 0,4648 0,3562 0,2375 0,1527
1 0 4999 0,4851 0,4588 0,3944 0,3008 0,2147 0,1426
3 0,3733 0,3602 0,3385 0,2929 0,2375 0,1737 0,1219
10 0,2286 0,2176 0,2026 0,1769 0,1481 0,1151 0,08666
30 0,1298 0,1210 0,4117 0,09223 0,08374 0,06777 0,05387

The film model described by Eq. (9) is said to be a "stable" film, while the model described by Eq. (10)
is called an "unstable” film, Note that the terms "stable" and "unstable™ used to denote these models differ
from the analogous thermodynamic concepts. From the standpoint of equilibrium thermodynamics, film sta-
bility is determined only by the sign of the derivative §P/6h; a plane film is stable if 8P/6h< 0; and is un-
stable if 8 P/8h> 0[11]. The models used here describe not the equilibrium state, but the flow process of a
thin film and presuppose, first, the actual form of the isotherm P(h) and, second, a particular type of rheologi-
cal properties of the film,

Equations (9) and (10) are analogs to Eq. (1) for the case of stable and unstable thin wetting films, re-
spectively. A film that exhibits the usual properties of thebulk liquid phase, i.e., such that A=0 and k=0,
is called ideal. Equations (9) and (10) degenerate into Eq. (1) in the case of an ideal film,

The final purpose of the theory is to determine hx (v, R). For this purpose we must integrate Eqs. (9)
and (10) in order to find the profile of a diverging meniscus in the slippage region and to relate this part of
the profile with the profile of the central part of the meniscus in which condition (2} breaks down and Egs. (9
and (10) become inapplicable.

The way in which Egs. (9) and (10} are integrated is analogous to the way in which Eq. (1) is integrated
[2]. Introduction of the dimensionless variables y=h/h«, x=(38v7 0/0)1 31/h, and parameters

. — (11)
6 noNh,”
ﬁ = k/h*, (12)
where N= (3v170/a)2/ 3 makes it possible to represent Egs. (9) and (10) in dimensionless form:
Pylde® = aly+t - dy/ds + (1 + Bly) (Uy* — 1/y); 13)
y' = ay'lytt 4 Wiy + B (1/y — 1/9°). (14)

The initial conditions of integration for Egs. (13) and (14) correspond to a smooth transition from the flat part
of a meniscus to a film of constant thickness,
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y—1,y -0,y -0 a8 z— — . (15)

Equations (13) and (14) were numerically integrated under the conditions (15) using the M~222 and
BESM-4 computers., Analytic solutions of the linear equations

2= az + {1 + Bz (16)
7= az’ + (1 - B), (1

into which Egs. (13) and (14) are transformed as y—1 under the substitution z=y—1, are used as the initial
segments of the integral curves y(x). The particular solution of Egs. (16) and (17) under the conditions (15)
has the form

3=C exp (ex),

where ¢ is the real root of the corresponding characteristic equation and C is the constant of integration,
which is determined by the choice of the origin of the x axis, Since the origin can be arbitrarily chosen in
this problem, C may be assigned any nonzero value that does not affect the final result.

It is clear from the form of the Eqs, (13) and (14) that y™—0 as y— =when n >1. Therefore, the integral
curve for any particular solution of these equations (corresponding to the actualvalues of & and B) approaches
without limit some limiting parabola described by the equation y "=C(x, B8) =const as y— «, This limiting
value of the second derivative is used to combine the profiles of the flat and central parts of the meniscus.

A method for "combining” both parts of the profile was given a general formulation in [12]. In the cases
being considered here hy <R and the radius of curvature of the central part of the meniscus in the xy plane
is nearly equal to the radius of the cylindrical capillary R or to half the width of the plane capillary. In this
case we have [12] '

hy=Cla, B)RN, (18)

where the coefficient C(o, f) is a function of the parameters o andB. If C(x, p) is known, the system of equa-
tions (11), (12), and (18) provide parametric dependence of hx on v and R.

In Table 1 can be found values of C(v, 8) obtained as a result of numerical integration of Eq. (13) for
different values of @ and B in the case n=2, while Table 2 is constructed for n=3, and Table 3 provides an~-
alogous results of integrating Eq. (14) for n=3, When o =0 and 8=0, Clo,B)Y=C, =0.643 and Eq. (18) describes
the well-known relation h.(v, R) for an ideal film [2, 3]

hy=0.643RN. 19

The case o =0, 3#0 corresponds to a film with viscosity different from that of an ideal film, but iden-
tical to it in terms of thermodynamic properties (P=0). In this case C(x,8) =C(8 (second column of Tables
1-3) and h« (v, R) is given by the equation

1/p=C(B) (R/EK)N, (20
which follows from Eqgs, (12) and (18).

The relation h, (N, R) for this case can be found in Fig. 2, in which curve 1 corresponds to an ideal film,
curve 2 to the attachment model of Eq. (7), and curve 3 to the slip model of Eq. (8). Note that all three curves
pass through the origin.

As B—~0 (hx—~ ») C(8) is expressed by the equation

where the sign of the last term is determined by the selected rheological model, Equations (20) and (21) imply
that hs (N, R) in this case (P =0) approaches asymptote parallel to the line corresponding to a linear depen-
dence (h+/k=1.93RN/K) for anideal film and k/3units from it along the y axis as N— = (Fig. 2, curves 4 and
5). Note that these asymptotes correspond to values of hy (N, R) for an ideal film if the origin of the h axis
(cf. Fig. 1) is shifted +k/3 units from the solid surface. That is, for large enough h (i.e., small deviations of
ne from ny), variation of the film viscosity can be formally represented as the result of a decrease (in the at-
tachment model) or an increase (in the slip model) of the effective thickness of the film by k/3 units if the
film has normal viscosity (ny). A similar result can be obtained from the theory for the relation ne(h).

By Eq. (11), if A=0, | @/~ =as N—0, If follows from Tables 1 and 2 that Cla, A—~a/n as ¢ — = inthe
case of stable films, which together with Eqs, (11) and (18) yields the equation

by = hy=]AR/6rc|Yr as v— 0. (22)
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The quantity hy obtained from the hydrodynamic equation as the limiting thickness of a stable film as v—0
is equal to the thickness of a thermodynamically equilibrium film with a meniscus. It can also be obtained
in a purely thermodynamically fashion, which demonstrates that our approach is theoretically correct.

The system of equations (11), (12), and (18) can be transformed by means of h, to a more suitable form
for practical use. We introduce the variable Ny=hy/CyR, where C, is a constant and let H=h«/hy; and W =
N/Ng v=k/h;. The coefficient 0.643 occurring in Eq. (19) should be chosen as Co. Equations (11), (12), and
(18) now imply that

H=[nC(a, B)/al/; (23)
W = [Cy/Clo, B) 1 H = [0.542/Clc:, By IH; (24)
v = pH = plnC(c, B)lalim. (25)

The system of equations (23)-(25) is equivalent to the system (11), (12), and (18). The variable y is assumed
given. The values of the coefficients C(@, 8) occurring in Eqs. (23) and (24) are found by solving Eq. (25) for
given y and « using a suitable coefficient table.

The system (23)-(25) makes it possible to construct universal dependences H(W, y). In particular, when
v =0 (the rheological properties of a thin film are identical to the properties of an ideal film)isotherms of the
type of Eq. (6) have a unique H(W) for given n that is invariant relative to the radius of the capillary and the
constants o, 7, A.

Figure 3 depicts the family of curves H(W, v) for stable films whenn=3 and y =0, 1, 3, and 10 (curves
2-5, respectively). As W—0, all the curves other than curve 1, which corresponds to an ideal film, converge
af the point (H=1) corresponding to an equilibrium film. Note that this occurs independently of the degree to
which the rheological properties of the film vary, When y=0, the curve H(W) asymptotically approaches the
line H=W as W— «; this line corresponds to an ideal film. When H=W, the curves y# 0, the curve H(W)
approaches asymptotes parallel to this line and y/3 units along the y axis from it as W—~«, i,e,, the curves
approach the same asymptotes as in the case considered above of a film that is thermodynamically identical
to an ideal film (the asymptotes of the curves 3-5 are represented by the broken lines 6-8, respectively).

Thus, hx becomes a function of the isotherms P(h) for sufficiently thick films (correspondingly, suf-
ficiently fast meniseci), but the effect of a variation in the viscosity in the boundary layer remains the same
for all thicknesses. However, since hx /hj—~1 as v— « (h; is the thickness of an ideal film for given velocities
and capillary radii), neither can a variation in viscosity practically be discovered at great film thicknesses.
For thin films (slow menisci), on the other hand, the thermodynamic features of thin films exert a more sub~
stantial effect than do the rheological features, which leads to a qualitatively new result. Stable films will
have an equilibrium thickness, while unstable films will have a critical wetting velocity.

As a— o (W—0,H—1), C(@, P for stable films can be expressed by the equation
' Cla, B)=a/n + (€, + C.P)/ Ve,

where C; and C, are constants that weakly depend on n, We apply this relation to Eqs. (23)~(25), obtaining for
H(W) near W =0 the equation

H=1+(C + Cy)V, (26)
where C and C, are constants that determine the size of n and V =w¥ 2=vy/v; (viisthe meniscus velocity at

which the value of hx for an ideal film is equal to hy). When n=3, C=0.271 and C« =0.157, while when n=2,
C=0.,465 and Cx =0,274,
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Fig. 3 Fig. 4

By Eq. (26), hy (v) is linear at low velocities, which is of significance if we are to extrapolate experi~
mental hx (v) to zero velocity in order to find hy. Moreover, the angle of inclination of the line H(V) at low
velocities can be used to find v, i.e., determine the degree of variation of the rheological properties of a
film.

Curves H(W) for unstable films constructed by means of Table 3 are presented in Fig. 4, where curves
1-8 represent the same situations as in Fig. 3. In this case h; is only of mathematical importance, since
there is no equilibrium wetting film with a meniscus. However, the value of h; that can be determined from
Eq. (22) makes it possible to also use the system (23)-(25) to construct universal curves for H(W), These
curves, as in the case of stable films, approach asymptotes parallel to the line H=W and v/3 units along the
y axis from it as W—, Every curve intersects the x axis for some critical W=W, depending on y. In gen-
eral, no wetting film is deposited on a lyophilic surface if the meniscus travels slowly,

Near W,, i.e., as o—— = and —~«, the solution of Eq, (14} becomes unstable, so that w, cannot be deter-
mined very accurately. Clearly, there exists a single-valued Wy(y). This dependence can be established by
analyzing the function C(x, 8) as # and |@| tendtoinfinity inthe light of the following considerations. As W—W,,
i.e., as h«—~0, C(a, B) will be such that, according to Eq. (18), after o and B have been replaced by the cor-
responding expressions from Egs. (11) and (12}, the result can be expressed by the equation

C(a, ﬁ)-_—h*f((ﬂ,lt), (27)

where w=A/ocWg; and f(w, k) is a function of the variables w and k and is independent of hx, Moreover, the cor-
responding values of @ and g near W, for each point of the curve H(W) (for the given v) are connected by the
equation

a/fr—1=0.643n/y"—1W, 28)
which follows from Eqs, (11) and (12).

Equations (27) and (28) make it possible to establish Wy(y) for unstable films, Tt is clear from Table 3
that at high v, C(x, B) apparently obeys the relation

Clee, B) = Claft, (29

where C, s, andt are constants, as |a! and 8 tendtoinfinity. By Eqs. (27) and (28), the exponents of & and

B in Eq. (29) will be connected by the relation s{n~1) +t=1, Based on the values of the coefficients in the lower
right corner of Table 3, we may set s =0.2, t=0.6, and C=0.8. Using these values, for large v, Egs. (18) and
(29) result in

W,~0.93 /3.

When v =0 (no slip), Cla, 8) =C () for an unstable film is expressed by the row of Table 3 correspond-
ing to 8=0. By Eq. (27), as a——< this relation will be expressed by the equation C(a)=C/Va&, where C is a
constant. By analyzing Table 3, we can establish the more exact equation

Cla)y=0.98/(V o + 0.72). (30)
Near W,, Egs. (18) and (30) imply that when y =0, H(W) is given by

H=217(V — V), (31)
where V,=W}/2=0.912.
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By Eq. (31), HW) is weakly convex to the W axis near W, whereas at higher W, the curve for H(W) is
weakly concave to this axis, as can be seen in Fig. 4. Thus, there is an inflection point near W;, and H(W) in
this region is generally linear. There are grounds for supposing that H(W) is of the same nature also for
nonzero vy, This makes it possible to linearly extrapolate H(W) until the point at which it intersects the x axis
in the region of low film thicknesses; in this region it is difficult to determine the exact form of H(W) in view
of the instability of the solution of Eq. (14) mentioned above. Segments of the curves for H(W) constructed in
this way are depicted in Fig. 4 by dashed—dot lines.

The instability of the solution of Eq. (14) as la | = w0 and B~ » reflects the fact that the process by which
film deposited on a lyophobic surface decomposes starts even near the diverging meniscus as the critical
wetting velocity V(y) is approached (i.e., as H~0). An investigation of this phenomenon is beyond the scope
of the present report.

The author wishes to express his appreciation to A, G. Grivtsov and V. S. Yushchenko for valuable as-
sistance in the computer calculations.,
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